
CHAPTER 9 
CURVED BEAMS 

I he theory of beam bending, presented in Chapter 7, is limited to straight 
beams or to beams that are mildly curved relative to their depth. However, if the ratio of 
the radius of curvature to depth for a beam is less than 5,  the flexure formula (Eq. 7.1) is 
generally inadequate for describing the flexural stresses in the beam. For beams that are 
curved in such a manner, the theory of bending must also include consideration of the cur- 
vature. Such a theory is developed in this chapter based on mechanics of materials meth- 
ods. Two important differences with respect to straight-beam bending result. First, the 
flexural stress distribution in a curved beam is nonlinear. Based on this result the neutral 
axis will not coincide with the centroidal axis of the cross section when the beam is sub- 
jected to pure bending. Second, a curved beam carries radial stresses as a consequence of 
the internal bending moment. These radial stresses have important design implications for 
thin-wall cross sections and for materials (such as wood and unidirectional composites) 
with relatively low tensile strength in the radial direction. 

9.1 INTRODUCTION 

Timoshenko and Goodier (1970) presented a solution based on the theory of elasticity for 
the linear elastic behavior of curved beams of rectangular cross sections for the loading 
shown in Figure 9 . 1 ~ ~ .  They obtained relations for the radial stress err, the circumferential 
stress bee ,  and the shear stress Ore (Figure 9.lb). However, most curved beams do not 

(a) (b)  

FIGURE 9.1 
nents. 

Rectangular section curved beam. (a) Curved beam loading. (b)  Stress compo- 
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have rectangular cross sections. Therefore, in Section 9.2 we present an approximate 
curved beam solution that is generally applicable to all symmetrical cross sections. This 
solution is based on two simplifying assumptions: 1. plane sections before loading remain 
plane after loading and 2. the radial stress 6, and shear stress Ore are sufficiently small so 
that the state of stress is essentially one dimensional. The resulting formula for the circum- 
ferential stress Oge is the curved beam formula. 

9.2 CIRCUMFERENTIAL STRESSES 
IN A CURVED BEAM 

Consider the curved beam shown in Figure 9 . 2 ~ .  The cross section of the beam has a plane 
of symmetry and the polar coordinates (r, 6 )  lie in the plane of symmetry, with origin at 0, 
the center of curvature of the beam. We assume that the applied loads lie in the plane of 
symmetry. A positive moment is defined as one that causes the radius of curvature at each 
section of the beam to increase in magnitude. Thus, the applied loads on the curved beams 
in Figures 9.1 and 9 . 2 ~  cause positive moments. We wish to determine an approximate 
formula for the circumferential stress distribution 0 0 0  on section BC. A free-body diagram 
of an element FBCH of the beam is shown in Figure 9.2b. The normal traction N, at the 
centroid of the cross section, the shear V,  and moment M, acting on face FH are shown in 
their positive directions. These forces must be balanced by the resultants due to the normal 

Y Ic 
YI 

FIGURE 9.2 Curved beam. 
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stress bee and shear stress ore that act on face BC. The effect of the shear stress ore on 
the computation of oee is usually small, except for curved beams with very thin webs. 
However, ordinarily, practical curved beams are not designed with thin webs because of 
the possibility of failure by excessive radial stresses (see Section 9.3). Therefore, neglect- 
ing the effect of ore on the computation of bee is reasonable. 

Let the z axis be normal to face BC (Figure 9.2b). By equilibrium of forces in the z 
direction and of moments about the centroidal x axis, we find 

or 

M ,  = Ioee (R  - r )  dA (9.2) 

where R is the distance from the center of curvature of the curved beam to the centroid of 
the beam cross section and r locates the element of area dA from the center of curvature. 
The integrals of Eqs. 9.1 and 9.2 cannot be evaluated until bee is expressed in terms of r. 
The functional relationship between bee and r is obtained from the assumed geometry of 
deformation and stress-strain relations for the material. 

The curved beam element FBCH in Figure 9.2b represents the element in the unde- 
formed state. The element F*B*C*H* represents the element after it is deformed by the 
loads. For convenience, we have positioned the deformed element so that face B*C* coin- 
cides with face BC. As in the case of straight beams, we assume that planes B*C* and 
F*H* remain plane under the deformation. Face F*H* of the deformed curved beam ele- 
ment forms an angle A(d6)  with respect to FH. Line F*H* intersects line FH at the neu- 
tral axis of the cross section (axis for which oe(3 = 0) at distance R, from the center of 
curvature. The movement of the center of curvature from point 0 to point O* is exaggerated 
in Figure 9.2b to illustrate the geometry changes. For infinitesimally small displacements, 
the movement of the center of curvature is infinitesimal. The elongation deee of a typical 
element in the 6 direction is equal to the distance between faces FH and F*H* and varies 
linearly with the distance (R, - r ) .  However, the corresponding strain is a nonlinear 
function of r, since the element length r d 6  also varies with I: This fact distinguishes a 
curved beam from a straight beam. Thus, by Figure 9.2b, we obtain for the strain 

where 

It is assumed that the transverse normal stress on is sufficiently small so that it may 
be neglected. Hence, the curved beam is considered to be a problem in plane stress. 
Although radial stress 6, may, in certain cases, be of importance (see Section 9.3), here 
we neglect its effect on €68. Then, by Hooke's law, we find 
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Substituting Eq. 9.5 into Eqs. 9.1 and 9.2, we obtain 

dA = R,EwA,-EwA (9.6) 

M x  = R,REmj  @ - ( R  + R , ) E w I d A  + E w I  rdA 
r 

= R,REcoA,-(R+R,)EuA+EcoRA = R , E o ( R A , - A )  (9.7) 

where A is the cross-sectional area of the curved beam and A,  has the dimensions of 
length and is defined by the relation 

A ,  = 

Equation 9.7 can be rewritten in the form 

M x  R , E o  = - 
RA,  - A  

Then substitution into Eq. 9.6 gives 

AmMx N E w  = 
A ( R A ,  - A )  - ;i: 

(9.8) 

(9.9) 

(9.10) 

The circumferential stress distribution for the curved beam is obtained by substituting Eqs. 
9.9 and 9.10 into Eq. 9.5 to obtain the curved beam formula 

(9.1 1) 

The normal stress distribution given by Eq. 9.1 1 is hyperbolic in form; that is, it varies as 
l/r. For the case of a curved beam with rectangular cross section (R/h = 0.75) subjected to 
pure bending, the normal stress distribution is shown in Figure 9.3. 

Since Eq. 9.1 1 has been based on several simplifying assumptions, it is essential that 
its validity be verified. Results predicted by the curved beam formula can be compared 
with those obtained from the elasticity solution for curved beams with rectangular sections 
and with those obtained from experiments on, or finite element analysis of, curved beams 
with other kinds of cross sections. The maximum value of circumferential stress 

Y 

FIGURE 9.3 Circumferential stress distribution in a rectangular section curved beam (R/h = 0.75). 
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as given by the curved beam formula may be computed from Eq. 9.11 for curved beams of 
rectangular cross sections subjected to pure bending and shear (Figure 9.4). For rectangu- 
lar cross sections, the ratios of to the elasticity solution bee(elast) are listed in 
Table 9.1 for pure bending (Figure 9.4~) and for shear loading (Figure 9.4b), for several 
values of the ratio Rlh, where h denotes the beam depth (Figure 9.2~). The nearer this ratio 
is to 1, the less error in Eq. 9.1 1. 

The curved beam formula is more accurate for pure bending than shear loading. The 
value of Rlh is usually greater than 1.0 for curved beams, so that the error in the curved 
beam formula is not particularly significant. However, possible errors occur in the curved 
beam formula for I- and T-section curved beams. These errors are discussed in Section 9.4. 
Also listed in Table 9.1 are the ratios of the maximum circumferential stress bee(,t) given 
by the straight-beam flexure formula (Eq. 7.1) to the value bee(eIast). The straight-beam 
solution is appreciably in error for small values of Rlh and is in error by 7% for Rlh = 5.0; 
the error is nonconservative. Generally, for curved beams with Rlh greater than 5.0, the 
straight-beam formula may be used. 

As R becomes large compared to h, the right-hand term in Eq. 9.1 1 reduces to 
-M,y/Z,. The negative sign results because the sign convention for positive moments for 
curved beams is opposite to that for straight beams (see Eq. 7.1). To prove this reduction, 
note that r = R + y. Then the term RA, in Eq. 9.1 1 may be written as 

RA, = J(Sy+1-1 dA = A -  jR:ydA - 

Hence, the denominator of the right-hand term in Eq. 9.1 1 becomes, for Rlh + 00, 

P P - 
(a)  -w (b)  

FIGURE 9.4 Types of curved beam loadings. (a) Pure bending. (b)  Shear loading. 

TABLE 9.1 Ratios of the Maximum Circumferential Stress in Rectangular Section 
Curved Beams as Computed by Elasticity Theory. the Curved Beam Formula, and the 
Flexure Formula 

0.65 1.046 0.439 0.855 0.407 
0.75 1.012 0.526 0.898 0.51 1 
1.0 0.997 0.654 0.946 0.653 
1.5 0.996 0.774 0.977 0.776 
2.0 0.997 0.831 0.987 0.834 
3.0 0.999 0.888 0.994 0.890 
5.0 0.999 0.933 0.998 0.934 
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Ar(RA,-A) = -Af(*+y-y 
R + Y  

- - A i? 1 + yL (y/R) d A - A f y d A - % j l + ( y / R )  dA 

- AIX - -  
R 

since as R/h + 00, then y/R + 0, 1 + y/R + 1, f Ly2 dAl(1 + y/R)] + Ix, and 
f Ly dA/( 1 + y/R)] + jy  dA = 0. The right-hand term in Eq. 9.1 1 then simplifies to 

MXR -(A-RA,-yA,) = -2- "(, y/R dA-'f 
A I X  AZ, l + ( y / R )  R l + ( y / R )  

The curved beam formula (Eq. 9.11) requires that A,, defined by Eq. 9.8, be calcu- 
lated for cross sections of various shapes. The number of significant digits retained in cal- 
culating A, must be greater than that required for b e e  since RA, approaches the value of 
A as R/h becomes large [see Eq. (a) above]. Explicit formulas for A, A,, and R for several 
curved beam cross-sectional areas are listed in Table 9.2. Often, the cross section of a 

TABLE 9.2 Expressions for A, R, and A,,, = 

a + c  
2 

A = b ( c - a ) ;  R = - 
C A, = b ln-  
a 

b 2 a + c  R = - 
2 3 A = - ( c - a ) ;  

bc c 
c - a  a 

A ,  = - - - 1 n - - b  

a(2b1 + b2)  + c(bl + 26,) 
( c - a ) ;  R = A = -  bl +b2 

2 3(b1 -I- b2) 
b l c -b2a  

A ,  = - I n - - b l + b 2  
c - a  a 

2 A = z b  

A, = 2x(R--A/=) 

A = nbh 



9.2 CIRCUMFERENTIAL STRESSES IN A CURVED BEAM 325 

TABLE 9.2 Expressions for A, R. and A,,, = (continued) 

A = n(b:-bf) 

A, = 2 n ( , / G f - , / - )  

A, = 2n(- b,R - b2R - - b A/-+ >"'-h:) 
hl h2 hl 2 

A = b 2 8--sin2B; b2 R = a +  4bsin38 
2 3(28- sin28) 

For a > b, 

A ,  = 2 a 8 - 2 b ~ i n 8 - n + , / ~ ~ + 2 + , / ~ ~ s i n - ' ( b + ~ ~ ~ ~ ~ )  a + bcos 8 

Forb>a, 

a + bcos8 
A, = 2a8-2bsin8+ 2 + , / m l n (  

A = b 2 8--sin2B; b2 R = a -  4bsin38 
2 3(28- sin28) 

A, = 2a 8 + 26 sin 8 - n d m  - 2 + , / n s i d 1 ( b  - ") a - bcos 8 

curved beam is composed of two or more of the fundamental areas listed in Table 9.2. The 
values of A, A,, and R for the composite area are given by summation. Thus, for compos- 
ite cross sections, 

n 

A =  x A i  (9.12) 
i =  1 

n 

(9.13) 
i =  1 
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EXAMPLE 9.1 
Stress in Curved 
Beam Portion ot 

a Frame 

Solution 

(9.14) 

where n is the number of fundamental areas that form the composite area. 

9.2.1 Location of Neutral Axis of Cross Section 

The neutral axis of bending of the cross section is defined by the condition Oe, = 0. The 
neutral axis is located at distance R,  from the center of curvature. The distance R ,  is 
obtained from Eq. 9.1 1 with the condition that Oge = 0 on the neutral surface I = R,. Thus, 
Eq. 9.11 yields 

R ,  = A M ,  
A,M, + N ( A  - RA,)  

For pure bending, N = 0, and then Eq. 9.15 yields 

A R ,  = - 
Am 

(9.15) 

(9.16) 

The frame shown in Figure E9.1 has a 50 mm by 50 mm square cross section. The load P is located 
100 mm from the center of curvature of the curved beam portion of the frame. The radius of curvature 
of the inner surface of the curved beam is a = 30 mm. For P = 9.50 kN, determine the values for the 
maximum tensile and compressive stresses in the frame. 

FIGURE E9.1 

The circumferential stresses coo are calculated using Eq. 9.1 1. Required values for A ,  A,,,, and R for 
the curved beam are calculated using the equations in row (a) of Table 9.2. For the curved beam a = 
30 mm and c = 80 mm. Therefore, 

A = b ( c - a )  = 50(80-30) = 2500mm' 
C 80 
U 30 

A ,  = bln - = 50 In- = 49.04 

Hence, the maximum tensile stress is (at point B) 

M x ( A - r A m )  - - -  9500 + 155(9500)[2500- 30(49.04)] 
A A r ( R A , - A )  2500 2500(30)[55(49.04)-25001 

G g e B  = P +  

= 106.2 MPa 
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EXAMPLE 9.2 
Semicircular 

Aircraft Beam 

Solution 

The maximum compressive stress is (at point C) 

9500 + 155(9500)[2500-80(49.04)] = -49.3 
oeec = 2500 2500(80)[55(49.04) -25001 

In a test of a semicircular aircraft fuselage beam, the beam is subjected to an end load P = 300 N that 
acts at the centroid of the beam cross section (Figure E9.2). 

(a) Using Eq. 9.1 1, determine the normal stress oeo that acts on the section AB as a function of radius 
r and angle 8, where, by Figure E9.2u, 1.47 m 5 r < 1.53 m and 0 5 8 5 a. 
(b) Determine the value of 8 for which the stress oee is maximum. 

(c) For the value of 8 obtained in part (b), determine the maximum tensile and compressive stresses 
and their locations. 

(d) Determine the maximum tensile and compressive stresses acting on the section at 8 = z/2. 

(e) Compare the results obtained in parts (c) and (d) to those obtained using straight-beam theory, 
where oee = -My/I. 

t P = 300 
0 '  

(a) 

FIGURE E9.2 

mm 

N 

= 300 N 

(a) Consider the free-body diagram of the beam segment 0 < 8 < a (Figure E9.2b), where N, V, and M 
are the normal force, the shear force, and the bending moment acting on the section at 8, respectively. 
By Figure E9.2b, we have 

CF. = V+Psine = o 
C F e  = N+Pcos8  = 0 

3 E M o  = PR(l-cose)-M = 0 

or 
V = -Psino = -300sin8 [N] 

M = PR(1-cos8) = 450(1-cos8) "em] 
N = - P ~ O S ~  = -3oocOse [NI 

For the cross section, by Figure E9.26 and Table 9.2, 

2 A = b ( c - a )  = 0.04(1.53-1.47) = 0.0024m 
C 153 
U 1.47 

A, = b In - = 0.04 In- = 0.00160021 m 

R = 1.5 m 
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Note that the number of digits of precision shown for A ,  is required in Eq. 9.1 1. Now, by Eqs. (a), 
(b), and 9.1 1, we have 

N M ( A - r A , )  
A A r ( R A , - A )  

Gee = - + 
(C) 

14.2857 - 9.5250r cos 105 CkPal a,, = - ~ c o s ~ +  ( r  )(I - 

(b) For maximum (or minimum) Coo, 

14 2857 - 9.5250r = 
d8 = [125+( . 1 

Hence, (Tee is minimum at 8 = 0 and it is maximum at 8 = n, with values given by Eq. (c). 

(c) From Eq. (c), the maximum tensile and compressive stresses at 8 = n are as follows: 

For r = 1.47 m, the tensile stress at A is 

a,, = 125 + 38,633 = 38,758 kPa = 38.76 MPa 

For r = 1.53 m, the compressive stress at B is 

aee = 125 - 37,588 = -37,463 kPa = -37.46 MPa 

(d) By Eq. (c), with 8 = n12, 

For r = 1.47 m, the tensile stress at A is 

a,, = 0 + 19,316 kPa = 19.32 MPa 

For r = 1.53 m, the compressive stress at B is 

gee = 0- 18,794kpa = -18.79 MPa 

(e) Using straight-beam theory, we have 

MY 00, = -- 
I 

where, by Figure E9.2a, 
1 3  1 3 -1 4 

12 12 
I = --bh = -(0.04)(0.06) = 7 . 2 ~  10 m 

and for 8 = n, 

M = 2PR = 2(300)(1.5) = 900 N m 

Hence, by Eq. (h), 

(i) 

For y = -0.03 m (point A in Figure E9.2a), Eq. (i) yields (Tee = 37.50 MPa, compared to see = 
38.76 MPa in part (c). For y = +0.03 m (point B in Figure E9.2a), Eq. (i) yields = -37.50 MPa, 
compared to O,, = 37.46 MPa in part (c). 

9 
00, = -( 1.25 x 10 ) y  

For 8 = n12, 

M = P R  = (300)(1.5) = 450 N m 

and then by Eq. (h), 

(3 8 
00, = -(6.25 x 10 ) y  

For y = -0.03 m (point A) ,  Eq. 6) yields 00, = 18.75 MPa, compared to oee = 19.32 MPa in part (d). 
For y = +0.03 m (point B), Eq. (i) yields Oee = -18.75 MPa, compared to a,, = 18.79 MPa in part (d). 
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EXAMPLE 9.3 
Stresses in t 
Crane Hook 

Solution 

Section BC is the critically stressed section of a crane hook (Figure E9.34. For a large number of 
manufactured crane hooks, the critical section BC can be closely approximated by a trapezoidal area 
with half of an ellipse at the inner radius and an arc of a circle at the outer radius. Such a section is 
shown in Figure E9.3b, which includes dimensions for the critical cross section. The crane hook 
is made of a ductile steel that has a yield stress of Y = 500 MPa. Assuming that the crane hook is 
designed with a factor of safety of SF = 2.00 against initiation of yielding, determine the maximum 
load P that can be carried by the crane hook. 

Note: An efficient algorithm to analyze crane hooks has been developed by Wang (1985). 

c & ! B O  

24.0 m m  
5.0 mm-+ -100 mm--+-+60.0 m m 4  

f P  

(a)  (b)  

FIGURE E9.3 Crane hook. 

The circumferential stresses Oee are calculated using Eq. 9.1 1. To calculate values of A, R, and A, for the 
curved beam cross section, we divide the cross section into basic areas A,, A,, and A, (Figure E9.3b). 

For area A a = 84 mm. Substituting this dimension along with other given dimensions into Table 
9.2, row (j), we find 

2 
A, = 1658.76 mm , R ,  = 73.81 mm, A,, = 22.64 mm (a) 

For the trapezoidal area A,, a = 60 + 24 = 84 mm and c = a + 100 = 184 mm. Substituting these 
dimensions along with other given dimensions into Table 9.2, row (c), we find 

A, = 6100.00 mm’, R, = 126.62 mm, A,, = 50.57 mm (b) 

For area A,, 6 = 0.5721 rad, b = 31.40 mm, and a = 157.60 mm. When these values are substituted 
into Table 9.2, row (h), we obtain 

2 
A, = 115.27 mm , R ,  = 186.01 mm, A,, = 0.62 mm (c) 

Substituting values ofAi, Ri ,  andAmj from Eqs. (axe) into Eqs. 9.12-9.14, we calculate 

A = 6100.00 + 115.27 + 1658.76 = 7874.03 mrn2 
A, = 50.57 + 0.62 + 22.64 = 73.83 mm 

6100.00( 126.62) + 115.27( 186.01) + 1658.76(73.81) 
7874.03 

R =  

= 116.37 mm 

As indicated in Figure E9.3c, the circumferential stress distribution oee is due to the normal load 
N = P and moment M, = PR. The maximum tension and compression values of 0 8 0  occur at points B 
and C, respectively. For points B and C, by Figure E9.3b, we find 
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EXAMPLE 9.4 
Proof Test 

of a Crane Hook 

rB = 60mm 

rc = 60+24+100+5 = 1 8 9 m  

Substituting the required values into Eq. 9.1 I ,  we find 

oees = -+ P 116.37P[ 7874.03 - 60( 73.83)] 
7874.03( 60) [ 116.37( 73.83) - 7874.031 7874.03 

= 0.000127P + 0.001182P 
= 0.001309P (tension) 

P 116.37P[7874.03 - 189(73.83)] oeec = -+ 
7874.03 7874.03( 189)[ 116.37(73.83) - 7874.031 

= 0.000127P - 0.000662P 
= -0.000535P (compression) 

Since the absolute magnitude of oBeB is greater than oeec, initiation of yield occurs when oeeB 
equals the yield stress Y. The corresponding value of the failure load (Pf) is the load at which yield 
occurs. Dividing the failure load Pf = Y/(0.001309) by the factor of safety SF = 2.00, we obtain the 
design load P ; namely, 

= 190,900N 500 
2.00(0.001309) 

P =  

To proof test a crane hook an engineer applies a load P to the hook through a pin (Figure E9.k). 
Assume that the pin exerts a pressure p sin 6 [N/mm2] at radius ri for 0 I 8 I K, where p is a con- 
stant. The hook has a uniform rectangular cross section of thickness t. 

(a) Determine the circumferential stress 0 0 0  as a function of P, r,, c, r, and 6. 
(b) For ri = 60 mm, r, = 180 mm, and t = 50 mm, determine the maximum tensile and compressive 
stresses on the cross section at 6 = I C / ~  and 6 = IC in terms of P. 

(c) If the maximum allowable tensile stress is 0 0 0  = 340 MPa, what is the allowable load P for a 
safety factor of 2.2? 

p +  

X 

(a) 

FIGURE E9.4 
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Solution (a) Consider the free-body diagram of the hook segment ABC (Figure E9.46). Summing forces in the 
y direction, we have 

IF 

C F Y  = P-j[(psin@)(rid@)t]sin@ = 0 
0 

or 

2P 
= c t  

Next consider the free-body diagram of an element of the hook. By Figure E9.4 we have for equilib- 
rium in the x direction 

e 
C F x  = -Ns inO-Vcose+p i t j  sin@ cos@d@ = 0 

0 

or 

1 
4 

Nsine+VcosO = -prit(l-cos28) 

For equilibrium in they direction, we have 

e 
C F Y  = -Ncos@+ Vsin8-prit sin@ sin@ d@ = 0 

0 

or 

1 
4 

Ncos8 - Vsine = - -prit(20- sin28) 

For equilibrium of moments 

3 C M o  = M-NR = 0 

or 
M = NR 

The solution of Eqs. (b), (c), and (d) is 

1 
2 

N = -prit(sine- ecose) 

V = -prit(Bsin8) 

M = -priRt(sin8- Bcose) 

1 
2 

1 
2 
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where 
A = (r, ,-ri)t  

Hence, by Eqs. (h), (i), and (j), 

(b) For ri = 60 mm, r,, = 180 mm, and t = 50 mm, Eq. (k) yields 

oee = P(sin0- e c o s e ) r z 6  -0.0005372) 

For 8 = ~ / 2 ,  Eq. (1) yields 

oee = P r-” - 0.0005372) 

For maximum tensile stress, r = ri = 60 mm, at which 

(oee),, = 0.000539P 

For maximum compressive stress, r = ro = 180 mm, at which 

(oee),, = -0.000179P 

For 8 = K, Eq. (1) yields 

oee = P ( ? ?  - 0.001690) 

For maximum tensile stress, r = ri = 60 mm, at which 

(oee),, = 0.00169P 

For maximum compressive stress, r = r,, = 180 mm, at which 

(~ee),, = -0.000563P 

(c) For a maximum allowable tensile stress of 340 MPa and a safety factor of 2.2, Eq. (0) yields 
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- -  340 - 0.00169P 
2.2 

or the maximum allowable load is P = 91,447 N = 91.45 IcN. I 
9.3 RADIAL STRESSES IN CURVED BEAMS 

The curved beam formula for circumferential stress 006 (Eq. 9.1 1) is based on the assumption 
that the effect of radial stress is small. This assumption is accurate for curved beams with circu- 
lar, rectangular, or trapezoidal cross sections, that is, cross sections that do not possess thin 
webs. However, in curved beams with cross sections in the fonn of an H, T, or I, the webs may 
be so thin that the maximum radial stress in the web may exceed the maximum circumferential 
stress. Also, although the radial stress is usually small, it may be significant relative to radial 
strength, for example, when anisotropic materials, such as wood, are formed into curved 
beams. The beam should be designed to take such conditions into account. 

To illustrate these remarks, we consider the tensile radial stress, resulting from a positive 
moment, that occurs in a curved beam at radius r from the center of curvature 0 of the beam 
(Figure 9%). Consider equilibrium of the element BDGF of the beam, shown enlarged in the 
free-body diagram in Figure 9%. The faces BD and GF, which subtend the infinitesimal angle 
do, have the area A' shown shaded in Figure 9.5b. The distribution of oee on each of these areas 
produces a resultant circumferential force T (Figure 9 . 5 ~ )  given by the expression 

(9.17) 

The components of the circumferential forces along line OL are balanced by the radial stress orr 
acting on the area tr d8, where t is the thickness of the cross section at the distance r from the 
center of curvature 0 (Figure 9 3 ) .  Thus for equilibrium in the radial direction along OL, 

F, = 0 = o,,tr de- 2T sin(d612) = (o,,tr - T) do 

since for infinitesimal angle den, sin(dW2) = den. Therefore, the tensile stress resulting from 
the positive moment is 

T or, = - 
ti- 

0 

(9.18) 

u r r  

(a )  (b) ( C )  

FIGURE 9.5 Radial stress in a curved beam. (a )  Side view. (b) Cross-sectional shape. (c) Ele- 
ment BDGF: 
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EXAMPLE 9.5 
Radial Stress in a 

T-Section 

The force T is obtained by substitution of Eq. 9.1 1 into Eq. 9.17. Thus, 
r 

T = A ! j d A + - j $ ! -  R A ,  Mx - A  A ( R A ,  MxAm - A )  j d A  
a a a (9.19) 

AAl,  - A‘A, 
T = c N +  A 

A ( R A , - A )  MX 

where 
r r 

A l , = j Y  and A ’ = J d A  (9.20) 
a a 

Substitution of Eq. 9.19 into Eq. 9.18 yields the relation for the radial stress. For rectangular cross 
section curved beams subjected to shear loading (Figure 9.4b), a comparison of the resulting 
approximate solution with the elasticity solution indicates that the approximate solution is conser- 
vative. Furthermore, for such beams it remains conservative to within 6% for values of Rlh > 1 .O 
even if the term involving N in Eq. 9.19 is discarded. Consequently, if we retain only the moment 
term in Eq. 9.19, the expression for the radial stress may be approximated by the formula 

A A L  - A’A, 
*rr = t r A ( R A ,  - A )  Mx (9.21) 

to within 6% of the elasticity solution for rectangular cross section curved beams sub- 
jected to shear loading (Figure 9.4b). 

9.3.1 Curved Beams Made from Anisotropic Materials 

Typically, the radial stresses developed in curved beams of stocky (rectangular, circular, etc.) 
cross sections are small enough that they can be neglected in analysis and design. However, 
some anisotropic materials may have low strength in the radial direction. Such materials 
include fiber-reinforced composites (fiberglass) and wood. For these materials, the relatively 
small radial stress developed in a curved beam may control the design of the beam owing to the 
corresponding relatively low strength of the material in the radial direction. Hence, it may be 
important to properly account for radial stresses in curved beams of certain materials. 

The curved beam in Figure E9.5 is subjected to a load P = 120 kN. The dimensions of section BC are 
also shown. Determine the circumferential stress at B and radial stress at the junction of the flange 
and web at section BC. 

FIGURE E9.5 



9.3 RADIAL STRESSES IN CURVED BEAMS 335 

Solution 

EXAMPLE 9.6 
Radial Stress in 

an I-Section 

Solution 

The magnitudes ofA,  A,, and R are given by Eqs. 9.12,9.13, and 9.14, respectively. They are 

A = 48( 120) + 120(24) = 8640 mm2 

120 240 A,,, = 120 In- + 24 In- = 77.93 mm 
72 120 

The circumferential stress is given by Eq. 9.11. It is 

120,000 + 364.0( 1 2 0 , ~ ) [ 8 6 4 0 -  72(77.93)] 
OeeB = 8640 8640(72)[ 124.0(77.93) -86401 

= 13.9 + 207.8 = 221.7 MPa 

The radial stress at the junction of  the flange and web is given by Eq. 9.21, with r = 120 mm and t = 
24 mm. Magnitudes of A’ and A; are 

A‘ = 48( 120) = 5760 mm2 
120 Ah = 120In- = 61.30mm 
72 

Substitution of these values into Eq. 9.21, which neglects the effect of N, gives 

364.0( 120,OOO)[8640(61.30) - 5760(77.93)] - - 138.5 MPa 
24( 120)(8640)[ 124.0(77.93) - 86401 o r r  = 

Hence, the magnitude of this radial stress is appreciably less than the maximum circumferential stress 
( JoeBB I > loeecl) and may not be of concern for the design engineer. 

The curved section of  the frame of a press is subjected to a positive moment M, = 96 kN m and a 
shear load P = 120 kN (Figure E9.6~). The dimensions of section BC are shown in Figure E9.6b. 
Determine the circumferential stress bee at point B and the radial stress orr at points B’ and C’ of sec- 
tion BC. Include the effects of  traction N. 

FIGURE E9.6 

The magnitudes ofA, A,, and R are given by Eqs. 9.12,9.13, and 9.1, They are 

A = 150(60) + 50( 120) + 150(40) = 21,000 mm2 
140 260 300 
80 140 260 (a) 

A,,, = 150 In- + 50 In- + 150 In- = 136.360 mm 

150(60) 110 + 50( 120)200 + 150(40)280 = 184.286 mm 
21 ,000 

R =  
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By Figure E9.6c, 

3 E M o  = M - M o - P R  = 0 

or 

M = 96,000,000 + 120,000( 184.286) = 118.1 x lo6 N mm 

Then, by Eq. 9.11 with r = 80 mm, the circumferential stress at b is 

120,000 + 

21,000 21,000(80)[ 184.286( 136.360) -21,0001 
118,100,000 (21,000- 80( 136.360)] Oee = - 

= 5.71 + 171.80 = 177.51 MPa 

To find the radial stress or,. at the junction of the flange and web (point B‘), we require the geo- 
metric terms A’ and Ah.  By Eq. 9.20, 

2 A’ = 150(60) = 9000 mm 

(b) 
140 

dr 140 
A h  = 150- = 150l11- = 83.94mm 80 

80 

With the values in Eq. (b), r = 140 mm, and t = 50 mm, Eqs. 9.18 and 9.19 yield 

A’ N + AA; - A’A, 
orr = - - M 

I A tr t rA(RA, -A)  

[21,000(83.94)-9000(136.360)] (118.1 106) - 9000 120,000+ 

= 7.347 + 104.189 = 11 1.54 MPa 

21,000 50( 140) 50( 140)(21,000)[ 184.286( 136.360) -21,0001 

Here we see that the effect of N represents (7.347/ 11 1.54) x 100% = 6.59% of the total orr at B’ . 

A’ and Ah are 
Similarly, for the radial stress at point C‘, where r = 260 mm and t = 50 mm, the geometric terms 

A’ = 150(60)+50(120) = 15,000mm2 

A h  = 150&+ 50 - = 114.89 mm 

140 260 
dr 

80 140 

Then, by Eqs. 9.18,9.19, and (c), we have 

15,000 120,000 [21,000(114.89)- 15,000(136.360)] (118.1 106) Orr = 50(260) + 50(260)(21,000)[ 184.286( 136.360) - 21,0001 

= 6.59 + 38.48 = 45.07 MPa 

At C’, the effect of N represents 14.6% of the total radial stress. In either case (point B‘ or C’), orr is 
considerably less than oee = 177.54 MPa. 
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EXAMPLE 9.7 
Radial Stress in 

Glulam Beam 

Solution 

A glued laminated timber (glulam) beam is used in a roof system. The beam has a simple span of 
15 m and the middle half of the beam is curved with a mean radius of 10 m. The beam depth and 
width are both constant: d = 0.800 m and b = 0.130 m. Dead load is 2400 N/m and snow load is 
4800 N/m. The geometry of the beam and assumed loading are shown in Figure E9.7. 

(a) Determine the maximum circumferential and radial stresses in the beam. 

(b) Compare the maximum circumferential stress to that obtained from the straight-beam flexure formula. 

(c) Compare the maximum circumferential and radial stresses to the allowable stress limits for Dou- 
glas fir: ~ ~ ~ ( ~ l l ~ ~ )  = 15.8 MPa, = 0.1 19 MPa (AITC, 1994). 

7200 Nlm 

1 

\ 
R = l O m  

\ 
4 

FIGURE E9.7 

(a) The maximum bending moment occurs at midspan and has magnitude Mx = wZ2/8 = 202,500 N m. 
Circumferential stress (Tee is calculated using Eq. 9.1 1. For the curved beam described, 

d a = R - -  = 9.6m 
2 
d c = R + -  = 10.4m 
2 

A = 0.13 x 0.80 = 0.104 m' 
10 4 A,,, = 0.13ln- = 0.0104056 
9.6 

The maximum circumferential stress occurs at the inner edge of the beam r = a. It is 

Mx(A-'Am) - - 202,500[0.104-9.6(0.0104056)] - - 15.0 
uee(max) = Aa(RA, -A)  0.104(9.6)[10.0(0.0104056) -0.1041 

The maximum radial stress is calculated using Eq. 9.21. However, the location at which 
o,.,.(,,) occurs is unknown. Thus, we must maximize or,. with respect to r. For a rectangular cross 
section, the quantities in Eq. 9.21 are 

t = b = width of cross section 
d = c - a = depth of cross section 
A = bd 

A' = b(r -a )  
C 

Q 
A, = b ln -  

r A; = b ln- 
U 
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Substitution of these expressions into Eq. 9.21 gives Mxr h(i) - (r  - a )  ~n 

a,, = - 
rd[R ln(:)-d] 

Maximizing a,, with respect to r, we find that o,~,,,~) occurs at 

(I-;.:) 
r = ae 

We evaluate Eq. (b) for the particular cross section of this example to obtain r = 9.987 m. At that loca- 
tion, the radial stress is, by Eq. (a), 

0.80 In(") - [(9.987 - 9.6) In 
202,500 9.6 - 

- 0.13 I 9.987(0.80)[ 10.0 In(%) - 0.801 

= 0.292 MPa 

An approximate formula for computing radial stress in curved beams of rectangular cross section is 
(AITC, 1994, p. 227) 

3M or, = - 
2Rbd 

Using this expression, we determine the radial stress to be or, = 0.292 MPa. The approximation of 
Eq. (d) is quite accurate in this case! In fact, for rectangular curved beams withR/d > 3, the error in 
Eq. (d) is less than 3%. However, as R/d becomes small, the error grows substantially and Eq. (d) is 
nonconservative. 

(b) Using the curved beam formula, Eq. 9.11, we obtain the maximum circumferential stress 
as (Tee(,,) = 15.0 m a .  Using the straight-beam flexure formula, Eq. 7.1, with I ,  = bd3/12 = 
0.005547 m4, we obtain CTBe = 202,500(0.40)/0.005547 = 14.6 MPa. Thus, the straight-beam flexure 
formula is within 3% of the curved beam formula. One would generally consider the flexure formula 
adequate for this case, in which R/d = 12.5. 

(c) The maximum circumferential stress is just within its limiting value; the beam is understressed 
just 5%. However, the maximum radial stress is 245% over its limit. It would be necessary to modify 
beam geometry or add mechanical reinforcement to make this design acceptable. 

9.4 CORRECTION OF CIRCUMFERENTIAL STRESSES 
IN CURVED BEAMS HAVING I, T, OR SIMILAR CROSS 
SECTIONS 

If the curved beam formula is used to calculate circumferential stresses in curved beams 
having thin flanges, the computed stresses are considerably in error and the error is non- 
conservative. The error arises because the radial forces developed in the curved beam 
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